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A system of equations is given for the three-dimensional laminar boundary 
layer in a multicomponent gas in the state of equilibrium, in the presence of 
ionization reactions and under the condition of quasineutrality. The external 
electromagnetic fields and radiative energy transfer are both assumed absent. 

A method of integration is proposed, based on the method of consecutive ap- 
proximations . The transport coefficients and the associated functions char- 
acterizing the variability of the physical and chemical properties of the gas 

are approximated across the boundary layer. In the first locally self-similar 
approximation, simple formulas are derived for the surface friction and heat 

exchange coefficients. Examples of computation in a flow of equilibrated 
partly ionized air past a cone with a spherically blunted nose at an angle of 
attack, and comparison is made with the frozen case. 

1. Let us consider a flow in a three-dimensional boundary layer of an N -com- 
ponent, quasineutral equilibrium gas, in which N, independent reactions take place 
including the ionization reactions. Following [l] , we shall write the reactions taking 
place in the gas, in the form 

At= 5 VijAj - Qi*, i=1,2, . . . , Nr (1.1) 
j=N,fl 

where Vij are the stoichiometric coefficients, Ai is the chemical symbol of the 
i -th component and Qi’ is the molar heat of the i - th reaction. We assign a 

constant number N to the electronic component. 

The system of equations of the multicomponent partly ionized three-dimensional 
laminar boundary layer in chemical equilibrium can be written, in the absence of ex - 
ternal electromagnetic fields and radiative energy transfer, in the form 

ark* 
PL%* + ag = 0, k=Nv,+l, . . . (‘V 

Lu + A,ua + A2w2 + Asuw = $+fG(!+) 

Lw + B,ua + B2w2 + Bsuw = + + -$-& (p -$) an 
Tag= 0 

+ (0’ _ 1) _L -!!Y + 
d; 2 

(1.2) 
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T r 

Cj* = Cj + c mj 

vkj z ck~ Ij* = Ij + 

k c mi 

vkj 1)1 Ik7 
k=l k=l k 

j = N,. + 1,. . . , N 

The first equation of (1.2) represents the equation of continuity, the second 
describes the diffusion of the elements, the third, fourth and fifth are equations of mo- 

tion of the gas and the sixth is the energy equation. Thermal diffusion and the influence 
of the diffusing heat capacities [l] are both neglected, The system (1.2) is closed by 

the Stefan - Maxwell relations, the conditions of equilibrium and the equation of state 
of the gas mixture 

“k 
Pag=m 

Ll = x X$i2, Ii = 1, 2, . . . , A’ 
I=1 

_$_ i x:i =Ki, vi = fJ Vij - I, i=l, . . . ,N, (1.41 
j=.Yl+ 1 

pyi 
j----N,+1 

N 

P--P%, m= 
c 

xkmk 

k=l 
(1.5 1 

Here 5, 11 and 5 denote an orthogonal coordinate system in which the 5 -axis is 
directed along the normal to the body surface in such a way that the surface 5 = 0 co- 
incides with the body surface, and the E - and 7 -axes are directed along the sur - 
face of the body; g,, and gs, denote the components of the metric tensor and g = 

grrgss; u, _V and w are the 5 -, 5 - and v - components of the mean mass 
velocity vector 0 ; p, p and T denote the pressure, density and absolute temper- 
ature of the mixture ; m is the molecular weight of the mixture ; Ci, xi, mi and ei 
are the mass and molar concentration, molecular weight and electric charge of the 

i -th component; cj* is the mass concentration of the i -th element; Ii is 
the projection of the mass diffusion flux of the i -th component on the 5 -axis; Ij* 
is the projection of the mass diffusion flux of the j -th element on the 5 -axis; 

Dij are the binary diffusion coefficients ; hi, hi0 and cpi denote the specific en- 
thalpy, specific heat of formation and heat capacity of the i -th component ; 
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N is the total enthalpy of the mixture; the index e denotes the parameters of the 
outer boundary of the boundary layer; p is the viscosity of the mixture;and CT’ = p 

c*’ / h’ is the effective Prandtl number where cpr and A’ are the effective heat 
capacity and effective heat conductivity coefficient of the equilibrium mixture. The 
formulas for calculating I.$,’ and h’ and the coefficients 

ej, bj (i = NT + 1, e . . , N - 2) 
which appear in the energy equation, were all given in Cl], The summation in the 
energy equation is carried out up to N - 2, since the N -tb term vanishes by vir- 
tue of(1.7) and the (f!’ - 1) -th t erm can be eliminated using the identity (1.6 ) 
(see below ). 

Figure 1 depicts the variation in the effective Prandtl number for air in equili - 
brium . The curves numbered 1 to 5 in Figs. l- 3 correspond to the pressures of 0.01 , 

0.1, 1, 10 and $00 atmospheres. Nine components 

02, Na, NO, Cl+, N+, NO+,O, N, E 
were considered and 0, N and E were assumed to be independent. Such a model 
of air will have a single coefficient oj and one bj , Fig, 2 depicts these coefficients 
for oxygen. 

The coefficients Ai and Bi (i = 1,. . ., 4) are determined by the geometry 
of the body and the external flow [Z]. 

The Stefan-Maxwell relations (1.3 ) take into account the electric field appear- 
ing as the result of separation of the charged component. The magni~de of the field 

is found from the condition of quasineutrality of the gas. 

Equations (1.4 ) represent the Guldberg -Waage conditions for the chemical re- 
actions, and the Saha equations for the ionization reactions. 

The system (1.2)- (1.5) must be supplemented by the indentities 

(1.6) 

The conditions of ~asineutra~~ of the gas and of the absence of an electric 
current across the boundary layer can be reduced, for a single ionization, under tbecon- 
dition that the electrically neutral components and electrons are regarded as the indep- 

endent elements. to the form 
(1.7) 

Thesystems (I. 2) -(I, 5) with (1.6) taken into account, represents a closed 
sv&em of 6 + 2N + 2 (N - IV,) independent equations with unions p, $r. u, 

-ul , v, H, cl, . . ., c,v, I,, . . ., fiv, C*N,& . . .t cN*c j%r+l , . . . , IN*- 

The boundary conditions at the outer boundary of the boundary layer and at the 

impermeable wall, are 
u+ z&, (k, Vj>, w -+ 20, (E, q), H--r H, = oonst (1.8) 
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Having solved the problem with boundary conditions (1.8 ) , we can find the 
viscous frictional stress distribution at the surface of the body, and the total convective 

heat flux towards the wall 

(1.9 1 

2. Let us consider the flow of a four-component gas past a body, The gas con- 
tains molecules, ions, atoms and electrons ; dissociation and ionization reaction: both 

take place in the gas. We denote the gas components by 111, 1, A and E respect- 
ively . We choose the atoms and electrons as the elements. Then the reactions taking 
place in the gas can be written in the form 

In the present case we have .‘1; = 4, ~~~~ = 2. Such a model enables us e. g. 

to study the flow of air past a body at temperatures ranging from normal to 15 000" - 
I! j O(JU” . Indeed, nitrogen and oxygen which are the main components of air have 

sufficiently similar properties. Moreover the thermodynamic functions of nitrogen and 
oxygen averaged with regard to the composition can be used as thermodynamic functions 

of the components. 
From the conditions (1. ‘7 ) of quasineutrality and absence of electric current 

and from (1.6 f I follows 

c,* EZ 1, I,\* Z 0 (2.1) 

The form of the system (1.2) - (1. 5) differs in the present case from that of the 
system of equations of a one-component viscous compressible heat conducting three - 
dimensional boundary layer [3 1 only in the fact that the coefficients ?>, c,, and [L 
for the one-component gas are replaced by the coefficients h’, cl,’ and p for the 

equilibrium reaction mixture. ~a~rally, the system must be supplemented by the re- 
lations from which these coefficients can be computed. 

Let us now pass from the coordinate 5 to the self-similar coordinate h and 

introduce the dimensionless normalized variables 

(2.2 1 
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where a (E, rl) and p (g, 11) are fumtions, arbitrary for the time being. 
Let us integrate the system of equations obtained twice with respect to ?L , from 

h to 00 and from 0 to ;h, , taking into account the boundary conditions. This 
yields a system of integro-differential equations the solution of which, together with the 

boundary conditions for the normalized unctions, is equivalent to the solution of the 

initial system of equations with boundary conditions (1.8 1. We shall solve this system 
using the method of consecutive approximations just as in the case of frozen gas E4 ]. 
Assume that the n -th approximation is known. Substituting this into the equations of 

the system we obtain the (n + 1) -th approximation . We ensure that the (n + 1) 
-th approximation satisfies the boundary conditions by introducing the controlling func- 
tions. 

@+tf = ,!$ (5, q, L/v@=), I$“+~) -;: @“+l)G (c7 ‘1, &/l/bt”+l,) 

($fi+1> = E’in+1t _, CPilfF (E& ?J, li/l/b(“+r)) 
(2.3 > 

The equations of the system yield an equation for the unknown controlling 

functions 6, b and d by making 5 -+ CC. 

Using the iteration process, we can find the quantities proportional to the fric- 
tional components and enthalpy gradient at the wall. 

for the 
8. Let US consider the locally self-similar case [3,4]. The system of equations 

(n +- ‘r) -th approximation has the form 

pwlf = _ #“‘(@’ + b(n)@) + b’““(‘;“‘) 
(3.1) 

(pl) -7 _ (Tot) (A',"' + bW@' __$ /,'""@') 

FJO-1) = &W(&") + b@)jjg") + d(",C;" + bt",d(",~;") _j_ E:\'"' 

The controlling functions are found from the system of algebraic equations 

(3.2) 

The coefficients A$“), Bitn), . . . represent dual integrals the determination of 
which requires the knowledge of the behavior of the parameters pe I p, ‘i I 1, o’ i I 
across the boundary layer (I ==.pp ,f (~~~~)). Typical examples of the profiles 

pe I p and 2 I I are given in [5], and their behavior is described well by the formulas 

i’e / P = ‘f + (p, / pm - 1)2-1r~2 (5), 1 / 1 = 1 + (1 / I, - .1).&*.4(p) 

Here and henceforth we use the functions 2, (5) of the type 

Z_,(ZJ =exp(-_52), Z,(C) =%{(5-f)mexp(-t2)dt 

ffl==#, I, . . . 0 
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where A, are found from the condition Z, (0) -: 1). 

Computing the heat flux towards the body at the stagnation point and comparing 
it with the results of [5,6], gives the following relation connecting o’ / t with the 
coordinate 5 : 

We obtain the solution of the problem in the first approximation using the foll- 
owing expressions as the zero approximation: 

Ec”, = 1 -- Z,, (Q, G(O) = Mu) (g, q) [Z, (5) - Z_, (<)I 

w -:- 1 - 2, (5) -k d(O) IL* (5) - z-, (C)I 

8i 

The coefficients of the system (3.2 ) which yields the controlling functions are 
ven in the zero approximation by 

A?; I - 0.25P," + 0.0075 N,* -I- (1 / I, - 1)(O.O06W,* - 
0.149 P,") -0.417 Iv,* pe / p,--0.318 *v,* (1 / I,-- I)& / pw 

By; == 0.104 Pz* - 0.194 N,* -I- (1. / I, - 1) (0.0674 Pz" - 
0.m ivt*) 

cg r Nz" 10.048 + 0.0364 (1 i I, - 1)7 
A!Ok, : MI* [O.OO'iS -i- ~.OO~l (1 / I, - I) - 0.417 pe ,'p, - 
-0.3Gqi / 1, - 1) pe i f&J 

UT; :-~: - 0.311Pr” - 0.194 111,” - (1 / E,, - 1) (0.1535 Pi” - 

0.1% M3*) 

c.lb = 0.1 Pz" t_ 0.048 A!~" + (1 / 1, -1)(0.0527 Pz" + 
0.0364 Mz") 

AFL = P," (0.0973 a,'+ 0.153ts,'fl,), Bg = -Ppz* (0.0347 0,' + 
0.068~ c&'f I,), Dg = - Pz* (0.046~~' + 0.0540,'/ I,) 

where the coefficients Ni*, Nz*, Mr*, Ma*, PI*, Pz* depend on the parameters 
of the outer flow and on the geometry of the body [Z]. Having found 6(O), b(O) and 

ci@) from (3.2 ) , we can obtain the dimensionless components of the friction co - 

efficient at the wall and the enthalpy gradient 

_-l E 
/ =I/~{N1*[0.808(1 +-)-0.798]- (3.3) 

‘!J ah ?.=a 

0.234P,* +b~~~(O.l13P,* - 0.209N3*)+ O.O709N,*b@)" 

- LJ -g h-0 
j &m[iqO.808(1-_)- 0.798]- 

0.209~(~)(~~* + III,*) + 0.0~~9~(~)'(~~* + i%f,*)) 

lw a0 

--- 

G* ah h=O = f/6(0,{- PI* (0.234 -k 0.209W) -+ 

w'P2* (0.113 + 0.0709dq) 
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4. Consider the flow of e~i~brium air past a cone with a spherically blunted 
nose at an angle of attack. We choose the coordinate system at the surface in such a 
manner, that the coordinate 5 is directed along the generatrix of the cone and is 

measured from the leading point, and the coordinate q denotes the angle between the 
meridian plane passing through the given point and the windward spreading line. 

We compute the outer flow using the data given in [7 ] for the pressure and vel- 
ocity at the cone surface in a homogeneous perfect gas. The temperature, the corn - 
position of the mixture and the density were found from the solution of the system of 
equations determining 2’ and ci (i = 1, 2,. . ., N) 

(4.1) 

aj + )J ajixi - xj = 0, i=N,,-+t,...,N 
i=l 

aji := a,;vi - vii, i = N, t- 1,. . ., IV 

Here H, and cje* are obtained from the conditions 
in an unperturbed gas, since from (1.8 ) we have H, = H, = const and Cjc* = 

Ciao*. When H, u, P and Cj* (i = N, + 1,. . , N) are specified, the system 

(4.1) contains :V -F 1 independent equations with N + 1 unknown cl,. . ., . . 
. , cN, 2’. This system was solved using the Newton’s method. Having found the corn - 
position and temperature, we can obtain the molecular weight of the mixture and hence 
the density from the equation of state. The transport coefficients at ‘the boundaries 
were computed as in [4 ]. 

We obtain the fo~owing expressions for the l~gi~d~na~ and transverse corn - 

ponents of the local coefficient of friction and the Nusselt number both defined in [4]: 

Cfl 1/z = m (0.234P,* - O.OlN,*), C&He = 
(4.2 ) 

I/sco, P,* (0.234 -+ 0.209d(0)) 
. 

The formulas (4.2 ) were obtained for high speeds of flight (‘$1, >, 20) , taking into 
account the smallness of the secondary flow and of the ratio Pe ! Pw ; this is true for 

a sufficiently cold wall, 
The coefficients P,* and Nr* appear and are investigatedin [2] in the course 

of study of a frozen boundary layer. 
Since the external nonviscous flow and the coordinate system were taken as 

identical, the coefficient N, * has the same value in the equilibrium case as in the 

frozen case. The coefficient PI* which depends on the variation of the parameter 
lrepe, becomes different on moving away from the stagnation point. 
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Figure3 depicts the dependence of the parameter uP on temperature and 

pressure for the case of air in equilibrium. The influence of equilibrium on the values 

of the controlling functions is shown by 

6(O) = [O.iOl Pi* - 0.0014 N,* + (0.149 PI* - 0.0061 Ni*) / I,]-’ 
(4.3 ) 

d(o) = 
1 - (1 - (5’) (1 + fi”q+)/[k (1 - t”)] - p,*w (0.0973o;f + 0,1536a,‘/Z,) 

P,*6(o) (0.152~~’ + 0.158oJl~) 

The transverse and longitudinal components of the local coefficient of friction 
for the equilibrium boundary layer differ in value by several percent from the corn - 

ponents of the coefficient of friction in the frozen gas. Figure4 depicts the variation 

in k, = Cfl vi& in the equilibrium boundary layer at the cone for M, .= 25.7 (a) 

and for Ma= 41 (b). Numbers 1, 2 and 3 denote the results alongthecone generatrices 
corresponding to rI=n/20,~=n/z, n==. 

The quantity k, = (1 / (TJ Nu / vz which characterizes the heat flux at 

the wall, is written identically for the equilibrium layer (4.2) and the frozen layer 

[4] , however the coefficient PI* and the controllong functions (4.3 ) all depend on 

the model of air used. 
Figure 5 depicts the coefficient k, for M, = 25.7 (a) and ivm = 41 (6). 

Computations show that in the case in which the dissociation reactions are essential 
(M, = 25.7) the influence of the choice of the gas model on k, is insignificant. 

When the speed of flight increases, the gas begins to ionize and the choice of the 
model begins to have an effect on the value of k, - In the equilibrium gas k, be- 

comes smaller. The dashed lines show the values of the coefficient k, for the fro- 

zen boundary layer at the cone surface. The diversity increases on moving away from 
the windward spreading line. The total convective flux towards the wall (1.10 ) is 

I, = - w, - W,) J&P, -I/ ; 1/6'o'P,*(o.234 + 0.209dO)) 

Thus the heat flux towards the wall in a flow of gas past a body is determined 
by the drop of the total enthalpy, the variation in the parameter PLePe, change in 

the velocity of the outer flow along the body surface, the geometry of the body and 
the choice of the gas model. 
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